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• Cloud amount and cloud-top pressure simulations show smaller improvement 17 

• Newer models have fewer compensating errors in their radiation budget 18 

Abstract 19 

The annual cycle climatology of cloud amount, cloud-top pressure and optical thickness 20 

in two generations of climate models is compared to satellite observations to identify 21 

changes over time in the fidelity of simulated clouds. In more recent models, there is 22 

widespread reduction of a bias associated with too many highly reflective clouds, with 23 

the best models having eliminated this bias. With increased amounts of clouds with lesser 24 

reflectivity, the compensating errors that permit models to simulate the time-mean 25 

radiation balance have been reduced. Errors in cloud amount as a function of height or 26 

climate regime on average show little or no improvement, although greater improvement 27 

can be found in individual models. 28 

Index Terms: 3337 Atmospheric Processes: Global climate models (1626, 4928); 3310 29 

Atmospheric Processes: Clouds and cloud feedbacks; 3360 Atmospheric Processes:  30 

Remote sensing (4337) 31 

Keywords: clouds, climate models, satellite simulator 32 
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1. Measuring changes in the simulations of global cloudiness over time 34 

The simulation of clouds by climate models is a key ongoing challenge in the numerical 35 

representation of Earth’s climate. Due to their large impact on Earth’s radiation budget, 36 

clouds are important for determining aspects of current climate, such as surface air 37 

temperatures in many regions [Ma et al., 1996; Curry et al., 1996], the strength and 38 

variability of atmospheric circulations [Slingo and Slingo, 1988], and the magnitude of 39 

climate changes that result from perturbations in the chemical composition of the 40 

atmosphere [IPCC, 2007].  While important, the modeling of clouds is very difficult 41 

because most cloud processes happen at scales far smaller than can be resolved by 42 

climate models, and thus their bulk effects must be represented with imperfect 43 

parameterizations. 44 

Given the efforts of many scientists over several decades to understand cloud processes 45 

and improve their representation in models, it is important to ask are climate model 46 

simulations of clouds improving and, if so, by how much? Here, we analyze the ability of 47 

two generations of climate models to simulate the climatological distribution of clouds 48 

and judge fidelity by comparison to several decades of satellite observations. Because of 49 

the significant differences between the ways clouds are observed and the ways they are 50 

represented in models, we use a “satellite simulator” to increase the chances that 51 

differences between the models and observations represent actual model deficiencies. We 52 

find that significant progress in the ability of models to simulate clouds has occurred over 53 
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the last decade, particularly in reducing the over-prediction of highly reflective clouds 54 

[Zhang et al., 2005]. 55 

2. Climate Models, Satellite Observations, ISCCP Simulator and Analysis Methods 56 

2.1 Climate Models 57 

The models we analyze are those that submitted output to the first two phases of the 58 

Cloud Feedback Model Intercomparison Project [McAvaney and LeTreut, 2003; Bony et 59 

al., 2011].  Submissions to the first phase (CFMIP1) were completed by the end of 2005 60 

from which we analyze nine models (Table 1). Submissions to the second phase 61 

(CFMIP2) began in late 2011 and as of the time of this writing we have output from ten 62 

models (Table 2).  CFMIP2 is a subset of the much wider fifth Coupled Model 63 

Intercomparison Project (CMIP5) [Taylor et al., 2012] associated with the fifth 64 

assessment report of the Intergovernmental Panel on Climate Change. Although less 65 

formal, there was also a close connection between CFMIP1 and the corresponding third 66 

Coupled Model Intercomparison Project (CMIP3) [Meehl et al., 2007]. As some models 67 

that participated in CFMIP1 did not participate in CMIP3, we retain the more accurate 68 

label of CFMIP, instead of CMIP, when referring to the ensembles. 69 

A direct evaluation of model changes is complicated by the fact that the CFMIP1 output 70 

is from the control climate integrations of slab-ocean models (i.e., atmospheric models 71 

coupled with a mixed-layer model of the upper ocean), while the CFMIP2 output is from 72 
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simulations of the atmosphere model with sea surface temperatures and sea-ice 73 

distributions prescribed from observations from recent decades (i.e. Atmospheric Model 74 

Intercomparison Project (AMIP) simulations [Gates et al., 1999]). This difference arises 75 

because the satellite simulator output we require is only available from the slab-ocean 76 

models of CFMIP1, while the slab-ocean model framework is not part of CFMIP2. We 77 

have examined the impact this difference might have on our study by comparing AMIP 78 

and slab-ocean model simulations for one model (CCSM4). We found that the 79 

differences between these simulations are much smaller than differences among CFMIP 80 

models. The impact of the different modeling frameworks is minor, because the 81 

differences in surface boundary conditions between slab-ocean models and AMIP 82 

integrations (and hence the resulting distribution of clouds) are small, even for slab-ocean 83 

models constructed to mimic the climate of the pre-industrial era.  84 

2.2 Satellite Observations  85 

We compare simulated clouds to the climatology of observations created by the 86 

International Satellite Cloud Climatology Project (ISCCP) [Rossow and Schiffer, 1991, 87 

1999]. ISCCP provides estimates of the area coverage of clouds stratified by ctp, the 88 

apparent cloud-top pressure of the highest cloud in a column, and by τ, the column 89 

integrated optical thickness of clouds. These estimates are the results of retrieval 90 

algorithms applied to radiance observations with typically 1 – 5 km resolution from the 91 

visible and infrared window channels of geostationary and polar orbiting satellites. They 92 

are accumulated for 280 km x 280 km regions every 3 hours starting in July 1983; we use 93 
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data from July 1983 through June 2008. Area coverage estimates are summarized in a 94 

joint histogram with 6 bins in τ and 7 bins in ctp; bin boundaries are shown in Figures 2 95 

and 3. We use custom-built daytime-only monthly averages that are described more fully 96 

in Pincus et al. [2012] and are available from http://climserv.ipsl.polytechnique.fr/. 97 

As a point of comparison, we also use roughly analogous observations from the 98 

MODerate resolution Imaging Spectrometer (MODIS) instruments for the period March 99 

2000 through April 2011 [Pincus et al., 2012].  MODIS uses substantially different 100 

methods of estimating ctp than does ISCCP, so the amounts of clouds in each bin of the 101 

joint histogram of ctp and τ from MODIS are not comparable to those observed by 102 

ISCCP or the output of an ISCCP simulator applied to climate models. (MODIS 103 

observations may be compared to the output of a MODIS simulator [Pincus et al., 2012], 104 

but that was not available at the time of CFMIP1.) On the other hand, MODIS retrievals 105 

of τ are roughly equivalent to those from ISCCP, so we compare MODIS observations, 106 

aggregated over bins of ctp, to both ISCCP observations and the output of ISCCP 107 

simulators. 108 

2.3 ISCCP Simulator 109 

A satellite simulator is a diagnostic code applied to model variables that reduces the 110 

influences of inconsistencies between the ways clouds are observed and the ways they are 111 

modeled [Bodas-Salcedo et al., 2011]. By mimicking the observational process in a 112 

simplified way, the simulator attempts to compute what a satellite would retrieve if the 113 
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real-word atmosphere had the clouds of the model. Simulators increase the chances that 114 

the comparison of satellite retrievals to model output after run through a simulator is an 115 

evaluation of the fidelity of a model’s simulation rather than a reflection of observational 116 

limitations or artifacts. The use of a satellite simulator also facilitates model 117 

intercomparison by minimizing the impacts of how clouds are defined in different 118 

parameterizations.  119 

The ISCCP simulator is the oldest of the satellite simulators used to evaluate clouds in 120 

models and has been widely used by most major climate modeling centers since its 121 

creation over ten years ago [Klein and Jakob, 1999; Webb et al., 2001]. Since it was the 122 

only simulator available for CFMIP1, it is the only simulator with which one can track 123 

progress over time. The ISCCP simulator mimics the assumption of the ISCCP retrieval 124 

algorithms that radiances in cloudy satellite pixels are assumed to arise from a single 125 

homogenous layer of cloud with ctp determined from an infrared brightness temperature. 126 

In detail, the ISCCP simulator takes a model’s vertical profile of grid-box mean clouds 127 

and creates a set of sub-grid scale columns which are completely clear or cloudy at each 128 

level and which are consistent with the model’s cloud-overlap parameterization. (This 129 

step is bypassed for models that provide to the simulator a set of previously generated 130 

sub-grid scale columns.) From every sub-grid scale column, one determines the single 131 

value of ctp and column-integrated τ that would be consistent with the single-layer cloud 132 

retrieval that ISCCP applies to every cloudy satellite pixel. In this step, ctp is determined 133 

by applying a simplified radiative transfer model in each sub-grid scale column to 134 

determine an infrared brightness temperature, which is then converted to the temperature 135 
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at cloud-top by using a cloud longwave emissivity derived from τ, as in the ISCCP 136 

retrieval algorithm. Once a cloud-top temperature has been determined, ctp is equated 137 

with the interpolated pressure that has the identical temperature according to the model’s 138 

profile of temperature. The column-integrated value of τ is equated with the sum of 139 

model-reported τ from all model layers that are cloudy in a given sub-grid scale column. 140 

From these sub-grid scale values of ctp and τ, the grid-box mean joint histogram of ctp 141 

and τ is formed for every grid box and then subsequently averaged over time. To make 142 

the comparison with satellite retrievals of τ more fair, the ISCCP simulator is only 143 

applied to grid-boxes that are sunlit at a given model time. 144 

The ISCCP simulator itself changed between CFMIP1, which used v3.5, and CFMIP2, 145 

which used v4.1, raising the possibility that differences in the diagnostics might be 146 

mistaken for changes in simulation quality. The most significant algorithmic difference 147 

between these two versions involves the determination of ctp for clouds under 148 

atmospheric temperature inversions, such as subtropical marine stratocumulus. In these 149 

situations, ISCCP often erroneously assigns ctp to a level far higher (100 – 300 hPa) in 150 

the atmosphere than it should be [Garay et al., 2008]. In CFMIP1, ctp is assigned to the 151 

highest interpolated pressure (lowest altitude) with matching cloud-top temperature, but, 152 

since the simulator is intended to mimic the retrieval process (even when it is faulty), the 153 

simulator was changed so that ctp is assigned to the lowest interpolated pressure (highest 154 

altitude) with matching cloud-top temperature when a temperature inversion is present in 155 

the model. We have verified that this and other simulator differences have little impact on 156 

our results by comparing the output of these two versions of the ISCCP simulator when 157 
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applied to identical integrations of two CFMIP2 models (CCSM4 and HadGEM2-A) 158 

(not shown). Simulator changes primarily affect ctp with differences of up to 0.01 in the 159 

amounts of clouds annually averaged over the domain 60°N-60°S for ctp bins where ctp 160 

< 680 hPa, and somewhat larger differences of up to 0.04 for ctp bins where ctp > 680 161 

hPa. 162 

We only use models for which we are reasonably confident of a correct implementation 163 

of the ISCCP simulator. Our primary test is to verify that the sum of cloud cover over all 164 

bins of the joint histogram is consistent with the model diagnostic of total cloud cover 165 

(‘clt’) which a model computes without using the ISCCP simulator [Zelinka et al., 2012]. 166 

2.4 Analysis Methods 167 

Climatological joint histograms of ctp and τ are formed for every calendar month by 168 

averaging model and observational data on a common 2° latitude by 2.5° longitude grid 169 

from every available year. Most model climatologies are based upon either 20 or 30 170 

simulated years whereas the observed climatologies are for 25 years for ISCCP and 11 171 

years for MODIS, but differences in the number of years available do not materially 172 

affect our evaluation [Pincus et al., 2008]. (The scalar measures of the fidelity of model 173 

simulations [Section 4] are sensitive to this issue if the number of years used to form a 174 

climatology is very low (< 5); this only affects results for the two MIROC models in 175 

CFMIP1.) To minimize issues with cloud retrievals above surfaces with snow or ice, we 176 

restrict our analysis to the domain 60°N-60°S. Because we use only monthly means, we 177 
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cannot determine whether differences among models or between models and 178 

observations arise from differences in the cloud frequency of occurrence or amount when 179 

present. 180 

We evaluate changes over model generations in two ways. One considers changes in the 181 

multi-model mean from each of the CFMIP ensembles. This has the advantage of 182 

considering all available models and of highlighting common model errors. However, 183 

multi-model means are sensitive to the addition of new models (especially given the 184 

small sizes of the model ensembles) and changes in the multi-model mean may not reveal 185 

individual model error reductions when the spread of model results is centered on the 186 

observed value, as is often the case [Gleckler et al., 2008]. To address these limitations, 187 

we also track the changes over time in the models from the five modeling centers that 188 

have contributed one or more models to both ensembles. For this analysis, we use models 189 

from the Canadian Centre for Climate Modeling and Analysis (AGCM4.0 to CanAM4), 190 

the United Kingdom’s Met Office Hadley Centre (HadSM3 to HadSM4 to HadGEM1 to 191 

HadGEM2-A), the Japanese effort associated with MIROC (MIROC(hisens) and 192 

MIROC(losens) to MIROC5), and the United States’ contributions from the National 193 

Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory 194 

(GFDL MLM 2.1 to GFDL-CM3) and the Community Atmosphere Model (CCSM3.0 to 195 

CCSM4 to CESM1(CAM5)). 196 
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3. Comparisons of climate model simulations of clouds to satellite observations 197 

3.1 Common improvements and failures in the simulation of total cloud amount 198 

The ability of models to simulate the space-time distribution of total cloud amount, i.e., 199 

how often a cloud occurs with any value of ctp and τ, is perhaps the most fundamental 200 

aspect of a model’s ability to simulate clouds.  Unfortunately, this quantity is problematic 201 

to define from observations: satellite estimates of total cloud amount are extremely 202 

sensitive to many observational factors including the scale and sensitivity of the 203 

fundamental observations, as well as decisions made during the aggregation to larger 204 

scales [Stubenrauch et al., 2009; Mace et al., 2009; Marchand et al., 2010; Pincus et al., 205 

2012]. We make the comparison more robust by restricting the analysis to clouds with τ 206 

exceeding some minimum threshold τmin, which we set to minimize hard-to-detect and 207 

partly-cloudy observations. We select τmin = 1.3 from among the discrete choices offered 208 

by the bin boundaries of the joint histogram of ctp and τ by balancing the following 209 

desires: (a) to maximize the number of clouds that we examine, (b) to maximize 210 

agreement among the observational datasets we use and (c) to minimize the chances that 211 

an observational platform would have missed a cloud with τ > τmin. Setting τmin = 1.3 212 

provides the smallest relative bias and relative root-mean-square difference, as well as the 213 

maximum correlation coefficient, between the space-time distributions of the annual 214 

cycle climatologies of ISCCP and MODIS. 215 
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Figure 1 illustrates the annual mean total cloud amount for the multi-model means of 216 

the CFMIP1 and CFMIP2 ensembles, the ISCCP and MODIS observations, and the 217 

difference of the CFMIP2 multi-model mean with ISCCP observations and with the 218 

CFMIP1 multi-model mean. For the domain 60°N-60°S, the annual mean total cloud 219 

amount fraction with a τmin of 1.3 from ISCCP and MODIS is 0.51 and 0.47, respectively. 220 

The multi-model means of both CFMIP1 and CFMIP2 are 0.43 with more than ¾ of 221 

models in both ensembles below the range of observational estimates. Although the 222 

multi-model mean is identical between the two ensembles, these area-averaged values 223 

have been getting closer over time to the observational estimates for four out of the five 224 

model families in which we can track progress. The progress is quite striking for the 225 

Hadley Centre models, with HadSM3 having a total cloud amount of 0.33 but 226 

HadGEM2-A having a total cloud amount of 0.43. 227 

Relative to ISCCP observations, model underestimates of total cloud amount 228 

preferentially occur in regions of marine stratocumulus on the eastern sides of subtropical 229 

ocean basins and over middle latitudes. In stratocumulus regions, there is a wide variety 230 

of results in both ensembles with about 3 or 4 members in each ensemble having total 231 

cloud amount values close to observed and the reminder of models significantly below 232 

observational estimates. Although the differences between the multi-model means of 233 

ensembles are small in these regions, one finds marked improvement in three of the 234 

model families in which we can track progress, improvement motivated perhaps by the 235 

well-known importance of the low clouds in these regions for mean climate and climate 236 

sensitivity [Bony and duFresne, 2005]. 237 
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Models also typically underestimate total cloud amount at middle latitudes over both 238 

land and ocean (Figure 1). While a few models are close to observed over the middle 239 

latitude oceans, all models underestimate total cloud amount over the middle latitudes of 240 

Eurasia and North America. Examination of level-by-level cloud amount indicates that 241 

these underestimates, over both land and ocean, are primarily of lower level clouds (ctp > 242 

560 hPa). When examining results within model families, one finds no consistent sign of 243 

progress for this bias. 244 

3.2 Improvements as a function of cloud-top pressure and cloud optical depth 245 

In addition to getting clouds to occur in the right places and times, correctly simulating 246 

ctp and τ is essential to getting the correct long- and shortwave impacts of a cloud on the 247 

top-of-atmosphere radiation budget. Figure 2 illustrates the amount of clouds with τ > 1.3 248 

as a function of ctp averaged over 60°N-60°S. Models tend to underestimate the amount 249 

of middle (440 hPa < ctp < 680 hPa) and low-level (ctp > 680 hPa) clouds while having 250 

about the right amount of high-level (ctp < 440 hPa) clouds [Zhang et al., 2005]. The 251 

general underestimate of low-level clouds is consistent with the lack of clouds in marine 252 

stratocumulus and middle-latitudes mentioned above. Differences in middle-level clouds 253 

are somewhat hard to interpret as many middle-level clouds observed by ISCCP are in 254 

fact multi-layer cloud scenes of cirrus above boundary layer cloud [Marchand et al., 255 

2010; Mace et al., 2011]. Though the ISCCP simulator is capable of reproducing this 256 

artifact [Mace et al., 2011], it will do so only if a model produces thin cirrus over 257 
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boundary layer clouds. Thus, underestimates of middle-level cloud may actually 258 

indicate a lack of cirrus above boundary layer cloud. 259 

Relative to that of the CFMIP1 ensemble, the CFMIP2 multi-model mean is closer to the 260 

observed amounts for 6 out of 7 bins of ctp, suggesting some improvement. This 261 

improvement is noticeable in the relative amounts of low-level clouds in the two lowest 262 

ctp bins. While a large part of this improvement is due to the change in the simulator’s 263 

determination of ctp for clouds under an inversion, improvement can be found in the 264 

models from centers that contribute more than one model to a given ensemble (compare 265 

HadSM3 to HadGSM1 and CCSM4 to CESM1(CAM5)). Because the ISCCP simulator 266 

version does not change within these two pairs, we can conclude that these models have 267 

improved their simulation of low-level clouds. For middle-level clouds, there is also a 268 

reduction in the model underestimate, particularly for the 560-680 hPa ctp bin. In fact, 269 

the perfect agreement of CESM1(CAM5) with ISCCP for this bin can partially be 270 

attributed to the fact that snow is now radiatively active and thus the simulator counts the 271 

contribution of snow to τ and the infrared-brightness temperature used to determine ctp 272 

[Kay et al., 2012]. 273 

Figure 3 illustrates the amount of clouds as a function of τ  regardless of ctp and averaged 274 

over 60°N-60°S. More so than for ctp, rather marked improvement can be seen for τ bins 275 

where ISCCP and MODIS agree fairly well (τ > 3.6). In particular, the amounts of 276 

optically thick clouds (τ  > 23) are significantly closer to observed in the CFMIP2 277 

ensemble relative to the CFMIP1 ensemble with a marked reduction in the previously 278 
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identified overestimate of highly reflective clouds [Zhang et al., 2005]. This bias 279 

reduction is widespread enough that it is present for each of the five model families in 280 

which we can track progress (Figure 4).  281 

The fraction of the 60°N-60°S area covered by optically thick cloud is 0.18 for the 282 

CFMIP1 ensemble mean but is 0.13 for the CFMIP2 ensemble mean. The CFMIP2 283 

ensemble mean is still larger than the observational estimates of 0.06 for ISCCP and 0.08 284 

for MODIS, although for HadGEM2-A and MRI-CGCM3, the amount of optically thick 285 

cloud is within the range of the two observational estimates.  The reduction between 286 

ensembles in optically thick clouds is larger for lower-level (ctp > 560 hPa) clouds than it 287 

is for upper-level (ctp < 560 hPa) clouds, 0.04 vs. 0.01 respectively, for the 60°N-60°S 288 

mean (not shown). With the greater reduction in lower-level optically thick clouds, 8 out 289 

of 10 CFMIP2 models as opposed to 5 out of 9 CFMIP1 models reproduce the fact that in 290 

ISCCP observations optically thick clouds occur more frequently with ctp at upper levels 291 

than at lower levels. 292 

Geographically, the amount of optically thick clouds is preferentially reduced over both 293 

the middle-latitude oceans and the portions of the subtropical oceans where 294 

stratocumulus typically transitions to trade cumulus (Figure 5). However, there is no 295 

improvement in the multi-model mean overestimate of optically thick clouds over 296 

tropical continents, a bias present in 7 out of 9 CFMIP1 models and 8 out of 10 CFMIP2 297 

models. We suspect that the common model bias in the diurnal cycle precipitation over 298 

tropical land [Yang and Slingo, 2001; Dai, 2006] contributes to this error by producing 299 
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too many optically thick anvil clouds near mid-day, when they are visible to the ISCCP 300 

simulator, rather than at night. 301 

The decrease in optically thick clouds has been accompanied by an increase in the 302 

amount of clouds with intermediate optical depths (3.6 < τ < 23) (Figures 3 and 6). This 303 

increase is present in each of the five model families in which we can track progress and 304 

the amount of clouds with intermediate optical depths lies in between the values from 305 

ISCCP and MODIS for 4 CFMIP2 models. 306 

Observational estimates of the amount of cloud with 0.3 < τ < 3.6 disagree sharply, in 307 

part because many of the observations which produce clouds in this optical thickness 308 

range are partly cloudy [Pincus et al., 2012]. Furthermore, the impact of clouds with τ < 309 

0.3 on the top-of-atmosphere radiation budget is too small for passive sensors to detect. 310 

Assessment of optically thin clouds requires the use of observations from an active sensor 311 

such as CALIPSO [Winker et al., 2009] and could be performed using the output of the 312 

CALIPSO simulator applied to CFMIP2 models [Cessana and Chepfer, 2012]. 313 

3.3 Radiative impact of model errors in cloud properties 314 

As in nature, clouds in climate models strongly affect the radiation balance as a function 315 

of space and time. Model tuning guarantees that the global and annual average of the top-316 

of-atmosphere net radiation is close to zero, but significant regional errors in the radiation 317 

field may persist, and correct regional fluxes can be achieved through compensating 318 
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errors in cloud properties. One common error is to have clouds which are too few but 319 

too bright, that is, to have lower-than-observed cloud amounts with larger-than-observed 320 

values of τ, such that the average shortwave radiation budget is about right [Zhang et al., 321 

2005; Nam et al., 2012].  322 

We explore these issues by using cloud radiative kernels [Zelinka et al., 2012] to compute 323 

the radiative effects of errors in cloud properties. A cloud kernel KSW,LW is the result of a 324 

radiative transfer calculation that computes the impact on the top-of-atmosphere short- 325 

and long-wave fluxes, relative to clear-sky, of the addition of a unit area covered by a 326 

cloud with a given ctp and τ.  Our kernels are computed as a function of latitude, 327 

longitude and calendar month. Multiplying the kernels by the bias, relative to ISCCP, in 328 

cloud amount in each bin of the joint ctp - τ histogram yields an estimate of the error in 329 

top-of-atmosphere radiation budget due to errors in the simulated distribution of clouds. 330 

However, evaluating differences with observations for each bin of ctp and τ is not 331 

warranted for two reasons. First, comparisons with clouds retrieved from ground-based 332 

remote sensors and passed through the ISCCP simulator [Figures 2c and 3c of Mace et 333 

al., 2011] suggest that the uncertainty of ISCCP retrievals is about ±200 hPa for ctp and a 334 

factor of 3 for τ. Thus we aggregate differences into a reduced-resolution joint histogram 335 

of ctp and τ with bin boundaries in ctp of 440 hPa and 680 hPa and in τ of 3.6 and 23. 336 

(This is equivalent to the reduced-resolution joint histogram available in the monthly-337 

averaged ISCCP data archives.) Second, the large observational uncertainties for thin 338 

clouds suggest that differences with observations for bins of low τ may not reflect model 339 
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errors. Thus, from the reduced-resolution joint histogram, we do not examine 340 

differences for τ < 3.6. 341 

In the first two columns, Figure 7 shows the annually and 60°N-60°S averaged bias 342 

relative to ISCCP in cloud amount fraction in the reduced-resolution joint histograms of 343 

ctp and τ for the five model families in which we can track progress and the multi-model 344 

means for CFMIP1 and CFMIP2. The rightmost column of Figure 7 shows the absolute 345 

values of the biases after summing over ctp bins. Figure 8 and 9 show the corresponding 346 

biases in W m-2 for the short- and long-wave radiation of the same models. (The 347 

Canadian model pairing is absent from Figures 8-9 because we cannot perform accurate 348 

cloud kernel calculations for AGCM4.0 for the reasons discussed in the Appendix of 349 

Zelinka et al. [2012].) The oldest models are in the left column and the most recent 350 

models in the center column. The prominent overestimate of optically thick clouds occurs 351 

in all ctp bins in the earlier models (left column), but is much reduced in the later models 352 

(center column).  Likewise the underestimate of optically intermediate clouds present in 353 

nearly all ctp bins has been reduced in the more recent model versions. 354 

The impact of these biases on the shortwave radiation quantifies the nature of 355 

compensating errors (Figure 8), with the overestimates of reflected shortwave by clouds 356 

with τ > 23 compensating for a lack of reflection by clouds with intermediate optical 357 

depths. The figure is similar to that of the cloud biases (Figure 7) except that weighting 358 

by the shortwave radiative kernel reduces the impact of the underestimate of optically 359 

intermediate clouds relative to the overestimate of optically thick clouds. The degree of 360 
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compensation is markedly reduced in the more recent models. For example, in HadSM3 361 

clouds with τ > 23 reflected approximately 30 W m-2 too much shortwave radiation 362 

which compensated for a 20 W m-2 underestimate of the amount of shortwave radiation 363 

reflected by clouds with intermediate optical depths. This compensating error is nearly 364 

eliminated in HadGEM2-A and significantly reduced in the other models in which we 365 

can track progress as well as for the multi-model mean. 366 

In the longwave spectrum, the nature of compensating biases is similar but with emphasis 367 

on upper level clouds (Figure 9). In general, there is too much reduction of outgoing 368 

longwave radiation by high clouds with τ > 23, which compensates for a lack of 369 

reduction of outgoing longwave radiation by optically intermediate clouds at all levels of 370 

the troposphere. Progress is clearly identifiable for the Community Atmosphere and 371 

Hadley Centre models but somewhat less for the MIROC and GFDL models and the 372 

multi-model mean. 373 

4. Scalar measures of the fidelity of model simulations  374 

While the evidence above supports the notion that the simulation of clouds in climate 375 

models has been improving, it is helpful to provide scalar measures of the fidelity of 376 

model simulations that can quantitatively demonstrate progress. Here we present a few 377 

such quantities chosen to measure different aspects of cloud simulations and for which 378 

observational uncertainty is less than the differences between models and observations 379 

and among models themselves. These measures may be useful as metrics for assessing 380 
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the skill of climate models in reproducing the present-day distribution clouds and their 381 

properties [Gleckler et al., 2008; Pincus et al., 2008; Williams and Webb, 2009]. 382 

In the following, c ctp,τ ,X( )  is the amount of cloud in a given bin of the ISCCP 383 

histogram and is a function of cloud-top pressure ctp, optical depth τ, and generalized 384 

position X, including latitude, longitude, and month. Total cloud amount C(τ
min
)  is the 385 

sum of the cloud amounts of all bins with τ greater than the minimum optical thickness 386 

τmin: 387 

C(τ
min
,X) = c ctp,τ ,X( )

τ

τ>τmin

∑
ctp

∑           (1) 388 

We compute the normalized root-mean-square error ETCA in the space-time distribution 389 

of total cloud amount, as: 390 

ETCA (τmin ) = CMOD (τmin,X)−C
OBS (τmin,X)"# $%

2
dX

X
∫ σ TCA .        (2) 391 

The integral in (2) denotes the area-weighted space-time average of squared differences 392 

between the model and ISCCP observations. The root-mean-square differences are 393 

normalized by the space-time standard deviation of the observed total cloud amount, 394 

given by: 395 

    σ TCA = COBS (τmin,X)−C
OBS (τmin )"# $%

2
dX

X
∫ .     (3) 396 
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As in Section 3.1, we set τmin = 1.3.  397 

Equation (1) uses the ISCCP simulator to ensure that model definitions of cloudiness are 398 

comparable with what is robustly observable but ignores the wealth of information 399 

provided by the joint histogram of ctp and τ. We evaluate the error Ectp-τ in this more 400 

finely-resolved distribution as the sum over a finite number of cloud-top pressure (Nctp) 401 

and optical thickness (Nτ) bins of squared differences between the model and ISCCP 402 

observations: 403 

Ectp−τ =
1

Nctp ×Nτ

× cMOD ctp,τ ,X( )− cOBS ctp,τ ,X( )( )
2

τ

τ>τmin

∑
ctp
∑

X
∫ dX σ ctp−τ .        (4) 404 

Considering the issues with thin-cloud retrievals and the uncertainty of the ISCCP 405 

observations, Ectp-τ is evaluated for the 6 bins of the reduced-resolution joint histogram 406 

shown in Figures 7-9 and is normalized by σctp-τ , the accumulated space-time standard 407 

deviation of observed cloud amounts in the reduced bin set. This makes Ectp-τ the 408 

normalized root-mean-square error in the amount of optically intermediate and thick 409 

clouds at low, middle, and high-levels of the atmosphere.  410 

We compute radiatively-relevant errors ESW, LW in the distribution of clouds by using the 411 

radiative kernels to weight bin-by-bin errors by their radiative impact on top-of-412 

atmosphere radiation fluxes: 413 
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ESW ,LW (τmin ) =
1

Nctp ×Nτ

× KSW ,LW (ctp,τ ,X)× cMOD ctp,τ ,X( )− cOBS ctp,τ ,X( )( )#
$

%
&
2
dX

τ

τ>τmin

∑
ctp
∑

X
∫ σ SW ,LW414 

 415 

(5) 416 

Multiplication by radiative kernel is performed for each bin of the original ISCCP 417 

histogram before aggregation to the reduced-resolution histogram.  ESW, LW are computed 418 

separately for shortwave and longwave radiation, and are normalized by the accumulated 419 

space-time standard deviation σSW,LW of the radiative impacts of observed clouds from 420 

the reduced-resolution histogram. 421 

Figure 10 shows ETCA, Ectp-τ, ELW, and ESW for each model stratified into two rows 422 

according to the model ensemble. Arrows from earlier to later models indicate the change 423 

with time in the fidelity of model simulations; left-pointing arrows indicate smaller errors 424 

over time. The arrows connect the earliest and latest models from the modeling centers in 425 

which we track progress as well as the mean measure of each model ensemble, which is 426 

computed using only the earliest CFMIP1 (latest CFMIP2) models from modeling centers 427 

that contribute more than one model to a given ensemble.  428 

The values of the total cloud amount measure ETCA range from 0.65 to 1.18 indicating 429 

that the standard deviation of biases in total cloud amount relative to ISCCP are generally 430 

comparable in size to the space-time standard deviation of observed total cloud amount. 431 

To put this number into context, the ETCA measure between the MODIS and ISCCP 432 

climatologies is 0.47. All model differences with ISCCP exceed this value, so it is likely 433 
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that errors in the climatology of total cloud amount are robustly determined. Consistent 434 

with Figure 1, there is not a clear sign of improvement when considering the ensemble as 435 

a whole with the CFMIP1 ensemble mean value of ETCA equal to 0.86 and the CFMIP2 436 

ensemble mean value of ETCA equal to 0.81. However, significantly larger improvement 437 

is found for the Hadley Centre and Community Atmosphere models. 438 

For the cloud property measure Ectp-τ, much more widespread progress can be found. For 439 

four of the five models in which we can track progress (Hadley Centre, Community 440 

Atmosphere, Canadian Centre, and GFDL models), errors relative to ISCCP has been 441 

reduced by 20-45% (relative), from 115-175% to 80-105% of the standard deviation of 442 

the ISCCP amounts of the 6 intermediate and thick cloud types. For the ensemble mean 443 

measure, moderate progress can be found with 25% (relative) reduction in Ectp-τ. Separate 444 

calculations reveal that the majority of the improvement in Ectp-τ comes from a better 445 

simulation of the cloud optical thickness rather than from a better simulation of the 446 

vertical distribution of clouds (figures not shown). For the equivalent error measure 447 

calculated using only two bins for optically intermediate and thick clouds regardless of 448 

ctp, the value for the best model HadGEM2-A is close to that calculated for differences 449 

between the observed ISCCP and MODIS distributions (0.71 vs. 0.59). 450 

Radiatively-relevant cloud property measures ESW and ELW are shown in the bottom row 451 

of Figure 10. Similar to the cloud property measure Ectp-τ, both measures show significant 452 

error reductions of 20-30% for the ensemble mean measure with larger 40-50% error 453 

reductions for the Hadley Centre and Community Atmosphere models. Again, the 454 
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majority of this error reduction comes from improvement in the simulation of τ, 455 

indicating that models are better simulating the amount of shortwave radiation reflected 456 

and longwave radiation trapped by optically intermediate and thick clouds. Though it 457 

may appear that there is a redundancy among Ectp-τ, ESW and ELW, only Ectp-τ and ESW are 458 

highly correlated; all other possible pairings, including those with ETCA, have statistically 459 

insignificant inter-model correlations. 460 

5. Why are simulations of clouds improving, and what impacts might this have? 461 

The agreement between satellite observations and simulations by climate models of the 462 

climatological annual cycle of cloud amount, cloud-top pressure, and optical thickness 463 

has improved over the last decade. The improvement is most striking in the simulation of 464 

τ, where a bias of having too many optically thick clouds (τ > 23) has been reduced by 465 

about 50% in the multi-model mean, with the best models having eliminated this bias. 466 

With a corresponding increase in the simulated amount of clouds with intermediate 467 

optical depth (3.6 < τ < 23), this reduces the tendency for climate models to simulate 468 

approximately the right amount of shortwave radiation reflected by clouds but with the 469 

compensating errors of having too few clouds that are too bright. 470 

Improvement in the amount or height distribution of clouds is not clear in the ensemble 471 

as a whole although progress can be found in individual models. For example, the 472 

simulations of total cloud amount in the Hadley Centre and Community Atmosphere 473 

models do show noticeable improvement (see ETCA of Figure 10); in part, this 474 
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improvement results from better simulations of the amount of clouds in the climatically 475 

important subtropical marine stratocumulus regions, where the amount of cloud is close 476 

to the observed value in their most recent models. Other aspects show no improvement in 477 

the majority of climate models such as the underestimate of cloud over middle-latitude 478 

land and ocean, and an overestimate in the amount of optically thick cloud over tropical 479 

land. Incremental progress by climate models in simulating clouds has also been reported 480 

in Jiang et al. [2012] and Lauer and Hamilton [2012].  481 

Pinpointing the reasons for model improvement is difficult without testing individual 482 

modifications from among the myriad of changes that modeling centers have 483 

implemented in the last decade, and it is likely that many factors have contributed. Even 484 

apart from parameterization changes, the incorporation of ISCCP simulator diagnostics in 485 

the routine evaluation of developmental model versions (as was done at the Hadley 486 

Centre for much of the last decade [Martin et al., 2006]) can have a subtle but persistent 487 

influence on the choices made in the model-development process in such a way as to lead 488 

to improved simulation of clouds. However, at most modeling centers the ISCCP 489 

simulator was not routinely run and the improvements in the simulation of optically thick 490 

clouds came as a surprise to some model developers we contacted. 491 

With regard to parameterizations, the improved boundary layer turbulence and shallow 492 

convection parameterizations in the Hadley Centre and Community Atmosphere models 493 

[Lock et al., 2000; Bretherton and Park, 2009; Park and Bretherton, 2009] are critical for 494 

the improved simulations in marine stratocumulus clouds. However, an improved 495 
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simulation would not have been realized without also increasing the vertical resolution, 496 

and in the case of the Hadley Centre, incorporating a new semi-Lagrangian dynamical 497 

core [Martin et al., 2006]. 498 

In the case of the improved optical depth distribution, the causes for improvement are 499 

less clear but there are some clues from what has happened at the individual modeling 500 

centers whose progress we can track. These clues were developed in part through 501 

correspondence with a number of model developers (see Acknowledgments). We 502 

present our speculations in two categories: the parameterizations of stratiform cloud 503 

microphysics and macrophysics. 504 

The improvements to cloud microphysics incorporated into a number of models seems to 505 

have been important, particularly for middle latitude storm-track clouds. The separation 506 

of liquid and ice into separate prognostic variables permits a more complete treatment of 507 

microphysics, particularly for mixed phase clouds, where the inclusion of the Bergeron 508 

process may reduce the amount of super-cooled liquid in deep frontal clouds. Improved 509 

microphysics [Wilson and Ballard, 1999; Morrison and Gettelman, 2008] was important 510 

for cloud changes in the Hadley Centre (HadSM3 to HadSM4), Japanese 511 

(MIROC(hisens) and MIROC(losens) to MIROC5), and Community Atmosphere Models 512 

(CCSM4 to CESM1(CAM5)). In the CAM, the new microphysics is directly responsible 513 

for a substantial reduction in liquid water path over middle-latitudes that contributes to its 514 

reduction of optically thick clouds [see Figure 12f of Gettelman et al., 2008]. 515 
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With regard to stratiform cloud macrophysics, the specification of cloud radiative 516 

properties seems to have been particularly important. For the Canadian model, the 517 

likeliest cause for the reduction of optically thick cloud is the introduction of the Monte 518 

Carlo Independent Column Approximation (McICA) [Pincus et al., 2003], which affects 519 

a model’s radiation budget by removing biases in the treatment of sub-grid scale 520 

variability in cloud optical properties due to overlap and internal variability. Upon model 521 

retuning, a significant reduction in liquid water path occurred which is apparently 522 

responsible for the reduction in optically thick cloud in this model.  McICA has also been 523 

incorporated to the GFDL-CM3 and CESM1(CAM5) and is likely partially responsible 524 

for the reduction of optically thick cloud in these models. Indeed, a sensitivity study 525 

using McICA in the GFDL model [see Figure 4 of Zhang et al., 2005] shows a reduction 526 

of 0.03 in the 60°N-60°S mean amount of optically thick cloud. In summary, the 527 

improved treatment of the radiative impact of clouds by McICA permitted better cloud 528 

properties to be simulated in models that are tuned to the observed radiation budget. 529 

Other aspects of cloud macrophysics are likely important. Because the geometric 530 

thickness of many observed stratiform clouds are thinner than the typical thickness of 531 

model levels, the increased vertical resolution of many models permits simulation of 532 

geometrically and optically thinner clouds (at fixed water contents and particle sizes). In 533 

the Hadley Centre model, the introduction of a sub-grid (in the vertical) treatment of 534 

clouds is also thought to have helped in this regard. 535 
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One may wonder if there is any connection between improved cloud simulations in 536 

climate models and the response to greenhouse gases in the climate changes these models 537 

simulate. We examined the relationships between our scalar measures of the fidelity of 538 

model simulations and various climate change measures from the available CFMIP1 slab-539 

ocean model simulations of the equilibrium response to an abrupt doubling of carbon 540 

dioxide and the available CFMIP2 coupled-ocean atmosphere model simulations of the 541 

response to an abrupt quadrupling of carbon dioxide. The measures include the 542 

equilibrium climate sensitivity, the global-mean net radiative forcing, and the global-543 

mean net, short- and long-wave cloud feedbacks and rapid adjustments to carbon dioxide 544 

calculated according the methods of Gregory and Webb [2008], Andrews et al. [2012] 545 

and Webb et al. [2012]. Boot-strapping methods suggest that only two relationships are 546 

potentially significant, both of which are displayed in Figure 11. Within each ensemble, 547 

models with smaller Ectp-τ have larger shortwave and net cloud feedbacks. Similar to the 548 

results of Pincus et al. [2008] for CMIP3 models, we did not find a significant 549 

relationship between climate sensitivity and ETCA. However, the relationships of net and 550 

short- wave cloud feedbacks with Ectp-τ for the combined ensembles are not significant, 551 

which cannot be explained by the different simulation types as there is no known 552 

systematic difference in cloud feedbacks between slab-ocean and coupled ocean-553 

atmosphere models [Yokohata et al., 2008]. Without a physical basis to these 554 

relationships, we can not eliminate the possibility that these correlations arise by chance. 555 

One implication of the reduction of cloud optical depths is that the magnitude of cloud 556 

feedbacks resulting per unit change in cloud optical depth can be larger if the current 557 

climate’s cloud albedo is lower [Stephens 2010]. 558 
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Tables 749 

Table 1. CFMIP 1 slab ocean models used in this study. 750 

Model 
Name 

Modeling Center Reference Number 
of Years 
in Run 

Symbol 

AGCM4.0 Canadian Centre for 
Climate Modeling and 
Analysis 

von Salzen et al. [2005] 20 c4 

CCSM3.0 National Center for 
Atmospheric Research 

Collins et al. [2004] 20 n3 

GFDL 
MLM 2.1 

NOAA Geophysical Fluid 
Dynamics Laboratory 

GFDL GAMDT [2004] 20 g2 

HadGSM1 Met Office Hadley Centre Martin et al. [2006] 20 h1 
HadSM3 Met Office Hadley Centre Pope et al. [2000] 20 h3 
HadSM4 Met Office Hadley Centre  Webb et al. [2001] 20 h4 
IPSL CM4 Institut Pierre Simon 

Laplace 
Hourdin et al. [2006] 20 i 

MIROC 
(hisens) 

Center for Climate System 
Research (The University 
of Tokyo), National 
Institute for Environmental 
Studies, and Frontier 
Research Center for Global 
Change 

Ogura et al. [2008] 5 m3 

MIROC 
(losens) 

Center for Climate System 
Research (The University 
of Tokyo), National 
Institute for Environmental 
Studies, and Frontier 
Research Center for Global 
Change 

Ogura et al. [2008] 5 m4 
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Table 2. CFMIP 2 AMIP models used in this study. 752 

Model Name Modeling Center Reference Number 
of Years 
in Run 

Symbol 

BCC-
CSM1.1(m) 

Beijing Climate Center, 
China Meteorological 
Administration 

Wu et al. [2010] 30 B 

CCSM4 Community Earth System 
Model Contributors 
(NSF-DOE-NCAR) 

Gent et al. [2004] 30 N4 

CESM1(CAM5) Community Earth System 
Model Contributors 
(NSF-DOE-NCAR) 

Neale et al. [2011] 27 N5 

CanAM4 Canadian Centre for 
Climate Modeling and 
Analysis 

von Salzen et al. 
[2012] 

60 C4 

CNRM-CM5 Centre National de 
Recherches 
Meteorologiques / 
Centre Europeen de 
Recherche et Formation 
Avancees en Calcul 
Scientifique 

Voldoire et al. 
[2012] 

30 Q 

GFDL-CM3 NOAA Geophysical Fluid 
Dynamics Laboratory 

Donner et al. 
[2011] 

30 G3 

HadGEM2-A Hadley Centre for 
Climate Prediction and 
Research/Met Office 

Collins et al. [2008] 30 H2 

MIROC5 Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), 
National Institute for 
Environmental Studies, 
and Japan Agency for 
Marine-Earth Science and 
Technology 

Watanabe et al. 
[2010] 

30 M5 

MPI-ESM-LR Max Planck Institute for 
Meteorology 

Stevens et al. 
[2012] 

30 P 

MRI-CGCM3 Meteorological Research 
Institute 

Yukimoto et al. 
[2011] 

32 R 

753 
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Figures 754 

 755 

Figure 1. Total cloud amount (τ > 1.3) from CFMIP1 and CFMIP2 multi-model means, 756 
ISCCP and MODIS observations, and the difference of CFMIP2 multi-model mean to the 757 
ISCCP and CFMIP1 multi-model mean. The ensemble-mean distribution of total cloud 758 
amount is only slightly closer to observations in CFMIP2 than in CFMIP1, despite 759 
substantial improvement in some models. 760 
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 762 

Figure 2. Fractional area in the domain 60ºS - 60ºN covered by clouds as a function of 763 
cloud-top pressure from models and ISCCP observations. CFMIP1 (2) ensemble means 764 
are plotted with a blue (red) line. The area is computed only for clouds with τ > 1.3. The 765 
symbol key for models is provided in Tables 1 and 2. Slight improvement in the vertical 766 
distribution of cloudiness is found in CFMIP2, although underestimates of the amount of 767 
low and middle level clouds generally persist.  768 

769 



 

 

 

44 

 770 

Figure 3. Fractional area in the domain 60ºS - 60ºN covered by clouds as a function of 771 
optical thickness from models and ISCCP and MODIS observations. CFMIP1 (2) 772 
ensemble means are plotted with a blue (red) line. The symbol key for models is provided 773 
in Tables 1 and 2. The CFMIP2 ensemble is in better agreement with observations than 774 
the CFMIP1 ensemble for the amount of clouds in different ranges of optical depth where 775 
those observations are robust (τ > 3.6). 776 

777 



 

 

 

45 

 778 

Figure 4. Fractional area in the domain 60ºS - 60ºN covered by clouds with τ > 23 for 779 
selected model families and observations. Models are plotted so as to illustrate progress 780 
in reducing the overestimate of optically thick cloud over time by ordering models from 781 
earliest to latest (left to right) within families. In models for which progress can be 782 
tracked, the amount of optically thick cloud has been reduced between model 783 
generations, making them more consistent with observations. 784 
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 786 

Figure 5. Fractional area covered by optically thick clouds (τ > 23) from CFMIP1 and 787 
CFMIP2 multi-model means, ISCCP and MODIS observations, and the difference of the 788 
CFMIP2 multi-model mean to ISCCP and the CFMIP1 multi-model mean. The over-789 
prediction of optically thick cloud has been alleviated mostly over the subtropical 790 
stratocumulus-to-cumulus transition and in middle latitudes, while biases over tropical 791 
continents have not been reduced. 792 
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 794 

Figure 6. Scatterplot of the fractional area in the domain 60ºS - 60ºN covered by clouds 795 
with τ > 23 and clouds with 3.6 < τ < 23. Observations from MODIS and ISCCP are 796 
represented by “M” and “I”, respectively. The symbol key for models is provided in 797 
Tables 1 and 2. Generally, any decrease in the amount of optically thick cloud has been 798 
compensated by an increase in the amount of optically intermediate cloud. 799 
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 801 

Figure 7. (left two columns) Area-averaged biases in the domain 60ºS - 60ºN with respect to ISCCP 802 
observations of fractional area covered by clouds in bins of cloud-top pressure and optical depth. Results are 803 
plotted for the 5 model families in which we can track progress and the ensemble mean. Models are ordered 804 
with the oldest models on the left and the newest models on the right. The sum of the histogram (denoted by Σ) 805 
and the range (maximum minus minimum value in the histogram, denoted by R) are shown in the title of each 806 
panel.  Positive values indicate model overestimates relative to observations. The fact that the recent models 807 
have fewer bins with color as well as reduced intensity in the bins with color indicates improvements with time. 808 
(right column) The same biases summed over cloud-top pressure bins and plotted as a function of optical depth 809 
for the oldest (grey-shading) and most recent (black) model of the same row. The absolute value of the summed 810 
biases are plotted with positive biases indicated by solid lines and negative biases indicated by dashed lines. In 811 
every model for which progress can be tracked, the coarse-grained joint distribution of optical thickness and 812 
cloud-top pressure is more consistent with observations in later model generations.813 
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 814 

Figure 8. As in Figure 7, but for the contributions to shortwave radiation reflected to 815 
space by clouds in W m-2 stratified into bins of cloud-top pressure and optical depth (left 816 
two columns) and then summed over bins of cloud-top pressure (right column). Positive 817 
values in the left two columns indicate a bias towards too much reflected radiation due to 818 
a positive bias in cloud amount. Most models have reduced the compensating error of too 819 
much shortwave radiation reflected to space by optically thick clouds and too little 820 
reflection by optically intermediate clouds.  821 
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 823 

Figure 9. As in Figure 7, but for the contributions to reductions of outgoing longwave 824 
radiation (relative to clear-sky) by clouds in W m-2 stratified into bins of cloud-top 825 
pressure and optical depth (left two columns) and then summed over bins of cloud-top 826 
pressure (right column). Positive values in the left two columns indicate a bias towards 827 
too much longwave radiation emitted to space due to a negative bias in cloud amount. 828 
Most models have reduced the compensating error of too much reduction of the outgoing 829 
longwave radiation by optically thick clouds and too little reduction by optically 830 
intermediate clouds. 831 
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 833 

Figure 10. Scalar measures of fidelity of CFMIP model simulations in reproducing the 834 
space-time distribution of several cloud measures, with greater fidelity indicated by lower 835 
E values. ETCA measures fidelity in simulating total cloud amount, whereas Ectp-τ 836 
measures fidelity in simulating cloud-top pressure and optical depth in different 837 
categories of optically intermediate and thick clouds at high, middle, and low-levels of 838 
the atmosphere. The impacts on top-of-atmosphere shortwave and longwave radiation in 839 
the same categories used for Ectp-τ are measured by ESW (lower left) and ELW (lower 840 
right), respectively. Models are stratified vertically into the two ensembles and are plotted 841 
according to the symbol key in Tables 1 and 2. For the modeling centers in which we can 842 
track progress, the arrow connects the oldest model in the family (arrow base) to the most 843 
recent model (arrow tip). The thick black arrow connects the average measure of 844 
CFMIP1 models (arrow base) to that of CFMIP2 models (arrow tip). Arrows pointing to 845 
the left indicate improvements with time. Most individual models and the ensembles as a 846 
whole show progress over time in most measures of simulation fidelity, with small 847 
improvement for the prediction of total cloud amount and large improvements for the 848 
distribution of cloud optical properties and their impact on shortwave radiation. 849 
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 851 
Figure 11. Scatterplot of Ectp-τ versus the global and annual mean net (left) and shortwave 852 
(right) cloud feedback for six CFMIP1 (blue) and nine CFMIP2 models (red). Linear 853 
regression lines and correlation coefficients are shown separately for CFMIP1 (blue) and 854 
CFMIP2 (red) model ensembles and as well for the combined ensemble (black). The 855 
symbol key for models is provided in Tables 1 and 2. Of all the measures examined only 856 
Ectp-τ is correlated with global-mean cloud feedbacks, and this correlation applies within 857 
but not between model ensembles, suggesting that it may be a statistical artifact. 858 
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